J. Am. Chem. So@001,123,2895-2896

Cross-Coupling Reaction of Oxos-allylnickel
Complex Generated from 1,3-Diene under an
Atmosphere of Carbon Dioxide

Masanori Takimoto and Miwako Mori*

Graduate School of Pharmaceutical Sciences
Hokkaido Unversity, Sapporo 060-0812, Japan

Receied Naember 20, 2000

Despite the possibility of carbon dioxide (§Obeing an
important natural carbon source for building organic molecules
there is only a limited number of GQncorporation reactions
for synthetic organic chemistry. Efficient use of €€ould be
achieved by the aid of a transition metal complebow-valent
nickel species have been known to mediate the coupling of CO
with various unsaturated hydrocarbons via an oxidative cyclo-
addition process:® Among those reactions, the coupling of 1,3-
diene with CQ is attractive because that process would produce
oxo-r-allylnickel complex 2, which could be converted into
various compounds (eq 1). If complex reacts with another
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organometallic reagent, a cross-coupling prod@cttan be
obtained. Here we report that organozinc reagents react with oxo-
mr-allylnickel complex2 in quite different manners depending on
the organic moieties on zinc metal.

Although there are several reports on the preparation of
complex?2 from 1,3-diene in the presence of g¢@nd a Ni(0)
complex® in most cases an excess amount of 1,3-diene and/or
longer reaction time are required. We found that 1,8-diazabicyclo-
[5.4.0Jundec-7-ene (DBU) was a superior ligand for nickel-
promoted oxidative coupling dfa with CO,. In the presence of
DBU (2 equiv to nickel) and Ni(cod)(1 equiv),1a (1.1 equiv)
easily reacted with CO(1 atm) under mild conditions (8C, 4
h) to afford carboxylic acidgla-T and4a-l in 77% yield after
hydrolysis (Scheme I).This result indicated that oxe-
allylnickel complexe®a-T and2a-I are formed from 1,3-diene
and CQ.
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Table 1. Nickel-Mediated Dicarboxylation of 1,3-Dienes
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alsolated yield based on Ni(cady The crude products were treated
with CH;N, before isolation¢ The crude product was refluxed in MeOH
in the presence of a catalytic amountpfsOH.

We next examined the coupling reaction afallynickel
complex2 with organozinc reagents via a transmetalation process.
When nickel complexe&a-l and 2a-T, prepared in situ under
the abovementioned conditions, were treated withavi€5 equiv
to nickel) at 0°C for 2 h, the desired methylation produsa-T
or 5a-l was not obtained at all, and an unexpected product,
dimethyl £)-3-hexene-1,4-dioatéa, was obtained in 68% vyield
after diazomethane esterification (Table 1, entry 1). The formation
of 6ameant that 1,4-dicarboxylation of 1,3-diene occurred under
these reaction conditions.

To investigate the generality of this reaction, various dienes
were examined (Table 1). In each case, a 1,4-dicarboxylated
product having Z)-olefin was obtained as a sole product. The
yields were generally good except in the caselb{entry 6).
Diene 1e afforded lactonése in good yield after treatment with

(7) The use of the other ligands such as-bjpyridine, TMEDA, or PCy
was not effective. Hoberg and Yamamoto reported that DBU is a superior
ligand for nickel-promoted carboxylation of alkene and alk§né3d
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Scheme 2 Table 2. Nickel-Mediated Arylative Carboxylation of 1,3-Dienes
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acid in methanol (entry 5). It was interesting that the dicarboxy- 16 1raa Lome | " Ve
lation of cyclic 1,3-diendl g affordedtrans-1,4-dicarboxylic acid 357 q7a7
7g as a sole product (entry 7).
It is likely that the second carboxylation is initiated by the & 19 16 57 MeozCCOZMe
formation of a methyk-allylnickel complex, such a8, via a _ _ _ 179 _
transmetalation process (Scheme 2:R/e), since the presence 21solated yield based on Ni(cody The ratio was determined by

of Me,Zn is essential for 1,4-dicarboxylation. Although the ‘HNMRanalysis<Time 1= 6 h; time 2= 2 h.<Time 1= 4 h; time

mechanism of this reaction is still unclear, theti addition of 2 =2 h.°The detailed characterization was done after separation by
silica gel column chromatographyTime 1= 4 h; time 2= 1 h.9 Time

two CO, molecules tdlg indicated that the second G&@rmally 1=6h time 2=1h

attacked from the backside of oxoallylcomplex 8.8° The ' '

selective formation of 4)-olefins suggested that the second In conclusion, we have demonstrated that nickel-promoted

carboxylation proceeds via antiallyl complex2 with retention dicarboxylation or arylative carboxylation of 1,3-dienes proceeded

of its geometrical configuration (Scheme 3). in a highly stereoselective manner in the presence ofiZMer
Surprisingly, the use of BAn, instead of MgZn, in the reaction arylzinc reagents. The reaction could be carried out under very

of 1gafforded methytis-4-phenyl-2-cyclohexene carboxyldt8g mild conditions in a short reaction time with very simple

(Table 2, entry 1) after diazomethane esterification. Blya procedures. Further studies on the development to a catalytic

addition of CQ and a phenyl group tdg suggested that the  process are in progress in our laboratory.

reaction proceeded via transmetalatio2gfvith Ph.Zn, affording

9, which then undergoes reductive elimination to gi¥fScheme ) o
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were also used in this reaction (entries&. In each reaction of

1g, the aryl group was introduced from the same side of
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